Soil Improvement for Stormwater Management, Erosion Control, and Landscape Success

David McDonald
Seattle Public Utilities
david.mcdonald@seattle.gov

and

Howard Stenn, Stenn Design
howard@stenndesign.com

Soils for Salmon Project
Washington Organic Recycling Council
www.soilsforsalmon.org www.buildingsoil.org

last updated January 2010 for UW LID certificate course
Summary of Soil
Best Management Practices

New Construction

- Retain and protect native topsoil & vegetation (esp. trees!)
 - Minimize construction footprint
 - Store and reuse topsoil from site
 - Retain “buffer” vegetation along waterways

- Restore disturbed soils by tilling 2-4" of compost into upper 8-12" of soil. Rip to loosen compacted layers.

Existing Landscapes

- Retrofit soils with tilled-in compost when re-landscaping
- Mulch beds with organic mulches (leaves, wood chips, compost), and topdress turf with compost
- Avoid overuse of chemicals, which may damage soil life
Why build healthy soil?

- More marketable buildings and landscapes
- Better site erosion control
- Reduced need for water and chemicals
- Less stormwater runoff, better water quality
- Healthy landscapes = satisfied customers

Washington State’s stormwater permits require these soil BMPs. That requirement is taking effect locally as towns and counties around Western Washington update their stormwater codes (as required by law). Some jurisdictions already require the soil BMPs – all will soon.

The good news is, it's easy, and customers want it. New home buyers say they are happy to pay more for a healthy, easy to care for landscape – and that starts with the soil.

Successful Projects
Learn more about these projects >

- preserving vegetation, stockpiling topsoil
- amending existing soil with compost
- placing compost amended topsoil

Healthy soil makes healthy landscapes, for satisfied customers.

Tools for builders

View slide show (PDF 5MB) Why, how-to tips, and successful projects, or brochure

Watch video (on King County’s website)

Building Soil Manual
the builder’s guide:
- summary (PDF) with links to compost calculator, suppliers, specs, and more
- full Building Soil Manual (PDF, 4MB)

Soil BMP requirements in state and local codes, or text of State BMP (PDF)

Landscaping guide (PDF) Design, building, and maintenance tips for professionals

When to amend? (PDF) Construction sequencing for soil protection and restoration

Erosion control with compost (PDF)
Meet your TESC requirements, build healthy soil, work faster, and save money.

Homebuyer factsheet (PDF) Print and use to promote your healthy soil and landscape practices to your customers. It sells!

Learn More — Background, science, specs and resources for designers, and related information are available on our partner website:

www.soilsforsalmon.org
Why a Soil Strategy is Essential: The Connection Between Soil and Water
The Stormwater Problem:
Impacts of turning spongy forests into cities

1972-1996: Amount of land with 50% tree cover decreased by 37% in Puget Sound region (from 42% of land down to 27%).

Impervious surface (roads, buildings) increased proportionately.

WA population doubled 1962-98.

2.7 million more people by 2020!
Changes in hydrology (runoff vs. infiltration) after development

Changes in stream hydrology as a result of urbanization (Schueler, 1992).
What happens to soils and soil functions as we turn forests into cities?

- ↑ compaction
- ↑ erosion
- ↑ loss of topsoil
- ↓ soil organisms
- ↓ soil structure
- ↓ natural fertility & disease prevention
- ↑ impervious surface

cause:
- ↑ winter runoff
- ↑ need for irrigation & chemicals
- ↓ biofiltration of pollutants
Where the Rain Goes

Evapotranspiration Interflow* Groundwater Surface Runoff

*water that travels just below the surface
What happens to **streams** as we turn forests into cities?

- **Runoff** = **Peak storm flows**
- **Erosion of stream bank and bed**
- **Fine sediment choking spawning gravels**
- **Pollutants** (automotive, landscape fertilizer and pesticides)
- **Groundwater recharge**
- **Summer low flows**
- **Summer stream temperature**
- **Oxygen in spawning gravels**
- **LWD - logs and rootwads** that young salmon need
- **Food supply for young salmon**
What are the impacts?

- Salmon decline
- Pollution
- Erosion
- Flooding & property damage
- Failing landscapes, resulting in more chemical use
What does current science tell us?

• Biological integrity of streams decreases rapidly when total impervious area in watersheds exceeds 5-10%.

• Traditional stormwater detention structures in developed areas are insufficient to prevent storm damage to streams.

• Salmon are in trouble unless we change our development practices.

• We need to:
 – decrease construction footprint
 – decrease impervious area (roads, houses)
 – maintain natural “buffer zones” along streams
 – preserve native soils and forests
 – restore ability of disturbed landscapes to detain & infiltrate rainwater

• A soil strategy can help.
Restoring Soil Functions with Organic Amendments
Stormwater management

- Incorporate 15-30% compost (by volume) into soil before planting
- Compost amendment builds soil structure, moisture-holding capacity
- Increases surface porosity

UW trials, turf on glacial till soil

Compost-amended till soil – up to 50% reduction in storm water runoff
Erosion and sediment management

- Compost berms or blankets – slow water, bind surface soil, and reduce erosion immediately
- Enhance survival/growth of plantings, helping to stabilize slopes over long term.

Berms instead of silt fence
Compost blankets on steep slopes
Added benefits of soil amendment

- Bio-filtration of urban pollutants
- Improved fertility & plant vigor:
 - less need for fertilizers and pesticides
 - reduced maintenance costs
 - Increased regrowth of protective canopy
- Reusing “wastes” (yard waste, manure, biosolids, construction, land clearing waste)
- Reduced summer irrigation needs
Understanding Soil: development from parent “dirt” & rock

Soil horizons & their evolution

- Substratum (C) or bedrock (R) weathers physically & chemically to subsoil (B)

- Primarily biological processes create topsoil (A) and organic (O) horizons

USDA - NRCS
http://soils.usda.gov
Sub-Soils in the Puget Sound Basin: Leftovers from glaciers & volcanoes

glacial till: unsorted, unstratified mixtures of clay, silt, sand, gravel, and boulders; deposited under ice, or in moraines.

hardpan: till compacted under glacier

outwash soils: layers sorted by particle size by water - sand / gravel / rocks

lake/marine bed soils: clay or silt that settled out in lakes & estuaries

volcanic ash: light, fertile, holds moisture - mostly blown east of Cascades

mudflows: mixed size, compact - like till

Learn about Puget Sound soils at:
www.puyallup.wsu.edu/soilmgmt/Soils.htm
Glacial till

- May be piled, uncompressed and unsorted, in *moraines* at edge or terminus of glacier

- *Basal till* from under the glacier (1/2 mile of ice over Seattle!) has been compressed into **hardpan**

- Good for foundations, but low permeability and hard for roots to penetrate
Glacial outwash

- May be sorted boulders, gravel
- ...sand and fines.....
- Or a mix!
Lake beds, lenses, and layers

- Silts and clays settle out...
- And then may be overlain in lenses with sand or gravel from succeeding outwash
- Grey-yellow color when saturated and anaerobic
- Great for farming, (best nutrient capacity) but unstable in slopes or foundations!
Volcanic ash or mudflows

- *Tephra* (ash) – light, fertile, holds moisture, erodible

- Mudflow – compact, mixed fines and boulders, low permeability, looks and acts like basal till, but more fertile
Alluvial soils

- Flat, loamy deposits in river floodplains (or ancient rivers)

- Best for farming, often wasted on development because they’re flat
Layers upon layers…

ignore them at your peril!

- Sandy outwash over compacted basal till hardpan
- Thin soil over bedrock
- Clay lenses over hardpan, or inter-layered with sand (unstable!)
Disturbed soils in urban areas

- Topsoil layer removed
- Compaction
- Subsoil (or worse) fill layers.
- Debris or toxins?
Soil Texture
(sand and finer particles)

Ribbon + feel test:
Moisten soil, roll between hands, then squeeze out with thumb

- Sand: no ribbon, grainy
- Sandy loam: ½ inch ribbon
- Loam: thick 1 inch ribbon
- Silt: makes flakes rather than ribbon
- Silty clay loam: thin, breaks easily, floury feel
- Sandy clay loam: stronger, grainy
- Clay: long (3 inch) ribbon, smooth feel

Source: Regional Municipality of Durham
How Does Soil Texture Impact Water Infiltration and Storage?

<table>
<thead>
<tr>
<th>Soil Texture</th>
<th>Total Water Storage</th>
<th>Plant-Available Water Storage</th>
<th>Infiltration Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>inches/foot depth</td>
<td>inches/foot</td>
<td>inches/hour</td>
</tr>
<tr>
<td>Sand</td>
<td>1.2</td>
<td>0.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Sandy loam</td>
<td>1.9</td>
<td>1.6</td>
<td>0.7</td>
</tr>
<tr>
<td>Fine sandy loam</td>
<td>2.5</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Loam</td>
<td>3.2</td>
<td>2.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Silt loam</td>
<td>3.5</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Sandy clay loam</td>
<td>3.7</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>Clay loam</td>
<td>3.8</td>
<td>2.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Silty clay loam</td>
<td>3.8</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>Clay</td>
<td>3.9</td>
<td>1.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Understanding soil: texture, structure, & pore space (thus infiltration)

Soil components:

- “The Dirt” (mineral part)
 - sand
 - silt
 - clay

- Air and Water

- Organic Matter and Soil Life (create aggregates & pores)

Good soil is about
- half mineral
- half space (air & water)
- plus a smaller but essential amount of organic matter & soil life

“Loam” is a mix of sand, silt, clay and organic, formed over time by nature
Understanding soil: how erosion starts

Compost particles are much bigger and harder to move than most soil particles, and much stickier.

Fig. 3. The relative effect of soil residue coverage on wind and water erosion potentials. The wind erosion function is taken from the Revised Wind Erosion Equation (RWEQ) model and the water erosion function comes from the Revised Universal Soil Loss Equation (RUSLE) model. (Merrill et al., 2002)
Understanding Soil Biology

Soil life provides essential functions

Soil is alive!

Cyst
Amoeba
Flagellate
Bacterial Colonies
Nematode
Ciliate
Clay-Organic Matter Complex
Decomposing Plant Cells
Fungal Hyphae and Spores
Actinomysete hyphae and Spores

USDA-NRCS
“Soil Biology Primer”
http://soils.usda.gov/sqi/
Common organisms in the soil foodweb

- **Bacteria**
- **Fungi**
- **Protozoa**
- **Nematodes**
- **Arthropods**
- **Earthworms**
Restoring soil life, to restore soil functions

Soil organisms create:

- soil structure
- fertility = nutrient cycling
- plant disease protection
- biofiltration
- erosion control
- stormwater detention

Compost kickstarts the soil ecosystem!
(Provides food and home for organisms)
How does soil life create soil structure?

- Bacteria secretions glue clays, silts and sands together into micro-aggregates.
- Micro-aggregates are bound together by fungal hyphae, root hairs and roots.
- Spaces are made by moving arthropods & earthworms, and decaying roots.
- Only when all organisms are present can roots and water move into the soil with ease.

S. Rose & E.T. Elliott
How does soil life provide fertility (nutrient cycling)?

- Soil foodweb stores nutrients in living & dead organic matter
- Nutrients are released in root zone as organisms eat and excrete “waste” (nitrogen, etc.)
- Mycorrhizal fungi bring nutrients and water to roots of plants

Dr. Michael P. Amaranthus, Mycorrhizal Applications Inc.
How does soil life provide plant disease protection?

Diversity \Rightarrow predation, parasitization & competition with the few disease-causing organisms

- Bacteria cover leaf surfaces, block infection
- Ecto- and endo-mycorrhizae prevent root infection
- Many organisms prey on the few disease-causing organisms
How does soil life filter out urban pollutants?

• Creates structure
• Breaks down hydrocarbons, pesticides
• Converts fertilizers to stable forms, so they are available to plants but won’t wash away
• Binds heavy metals in soil, so they don’t wash into streams
WsDOT: Compost Amended Vegetated Filter Strip - 2004 pollutant & flow reduction trials along I-5

These slides courtesy of:
Mark Maurer
WSDOT Design Office
Roadside and Site Development Manager
360-705-7242 maurerm@wsdot.wa.gov
10 ft wide compost strip treats stormwater from 2 lanes of roadway

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Untreated Runoff</th>
<th>Compost filter strip treated</th>
<th>% Concentration Reduction</th>
<th>% Load Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/l</td>
<td>mg/l</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>TDS</td>
<td>52.7</td>
<td>56.6</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>T. Phosphorus</td>
<td>0.089</td>
<td>0.26</td>
<td>-192</td>
<td>-2</td>
</tr>
<tr>
<td>COD</td>
<td>73.5</td>
<td>49.6</td>
<td>33</td>
<td>76</td>
</tr>
<tr>
<td>TSS</td>
<td>81</td>
<td>23</td>
<td>72</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>ug/l</td>
<td>ug/l</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Total Copper</td>
<td>28.18</td>
<td>9.14</td>
<td>68</td>
<td>89</td>
</tr>
<tr>
<td>Dissolved Copper</td>
<td>7.85</td>
<td>5.77</td>
<td>26</td>
<td>74</td>
</tr>
<tr>
<td>Total Lead</td>
<td>12.62</td>
<td>3.54</td>
<td>72</td>
<td>90</td>
</tr>
<tr>
<td>Dissolved Lead</td>
<td>0.5</td>
<td>0.05</td>
<td>90</td>
<td>97</td>
</tr>
<tr>
<td>Total Zinc</td>
<td>129.70</td>
<td>31.57</td>
<td>76</td>
<td>91</td>
</tr>
<tr>
<td>Dissolved Zinc</td>
<td>64.22</td>
<td>20.71</td>
<td>68</td>
<td>89</td>
</tr>
</tbody>
</table>

TDS=Total Dissolved Solids, COD=Chemical Oxygen Demand, TSS=Total Suspended Solids
How does soil life control erosion?

- Creates pore spaces, increases infiltration
- Sticks soil particles & aggregates together with bacterial slime, fungal hyphae, & root hairs (bigger aggregates are harder to move) → “aggregate stability”
- Promotes rapid plant growth & deep root development
How does soil life provide stormwater detention / infiltration?

- Builds soil structure, moisture-holding capacity
- Increases surface porosity

UW trials, turf on glacial till soil

Compost-amended till soil – up to 50% reduction in storm water runoff
Effect of OM Content on Available Soil Moisture Storage
How can we enhance & restore soil biodiversity, to improve plant growth, water quality, and reduce runoff?

- Prevent /reduce compaction (keep heavy machinery off)
- Reduce intensive use of pesticides & soluble fertilizers
- Incorporate compost into soil to feed soil life

organic matter + soil organisms + time creates ⇒ soil structure, biofiltration, fertility, & stormwater detention
Soil Amendment: A cost-effective solution for new development

• Much better plant survival = fewer callbacks

• Easier planting

• Can cut irrigation needs by 50% = 3-7 year payback on irrigation savings alone
Improving soil function in existing development

• Amend soil when re-landscaping

• Plant native trees & shrubs, especially near waterways

• Mulch beds annually with leaves, chips, compost, etc.

• Topdress turf areas with compost (aerate, topdress, rake in)
Exercise – soils and amendment rates

Match the numbered soil samples with their correct descriptions

1. ____ A. Sandy subsoil (0% OM +/-)
2. ____ B. Sandy loam topsoil (5-10% OM +/-)
3. ____ C. Clay subsoil (0% OM +/-)
4. ____ D. Clay pasture topsoil (10% OM +/-)
5. ____ E. Glacial Till (0% OM +/-)
6. ____ F. Yard Debris Compost (50% OM +/-)
7. ____ G. Compost/Sand “Topsoil” (10-15% OM +/-)
8. ____ H. Sandy subsoil w/compost (10% OM +/-)
9. ____ I. Glacial Till w/compost (10% OM +/-)
10. ____ J. Forest duff (80% OM +/-)

Plus an 11th mystery sample – what is it?
Summary of Soil Best Management Practices

New Construction

- Retain and protect native topsoil & vegetation
 - Minimize construction footprint
 - Store and reuse topsoil from site
 - Retain vegetation “buffer” along waterways

- Restore disturbed soils by tilling in compost, and loosen compacted subsoil.

Existing Landscapes

- Till in compost when re-landscaping
- Mulch beds and topdress turf with compost
- Avoid overuse of chemicals, which may damage soil life
WA State Guidance on soil & LID BMPs: DOE Stormwater Mgmt. Manual for Western WA

- Equivalency required for Phase 1 NPDES permittees
- Volume V, Chapter 5 - “On-Site Stormwater Mgmt.”
 - Downspout, sheet, & concentrated flow dispersion
 - BMP T5.13 Post-Construction Soil Quality and Depth
 - Other Site Design BMP’s inclue preserving vegetation, cisterns, rain gardens, porous paving, soil compaction prevention, & T5.35 “Engineered Soil/Landscape Systems”
- Volume III, Chapter 3 - “Flow Control Design”
 - Downspout infiltration and dispersion
- Flow model credits for runoff dispersion into amended soils

DOE BMP T5.13
Post-Construction Soil Quality and Depth

• Retain native soil and duff wherever possible
• All areas cleared and graded require 8 inch soil depth:
 – Organic matter content ≥ 10% dry weight (now ≥ 5% for turf)
 – Use native topsoil, amend existing soil with compost, or import topsoil blend
 – Subsoil scarified 4 inches below 8-inch topsoil layer
 – Protect amended soil from compaction
 – Mulch after planting
 – Maintenance practices to replenish organic content
Guidelines Manual for Implementing BMP T5.13

- Manual developed regionally with experts
- 10% O.M. for landscape beds; 5% for turf
- Develop a “Soil Management Plan” for each site
- **Four options for soil management (can use 1 or more / site):**
 1. Retain undisturbed native soil & vegetation, protect from compaction
 2. Amend existing soil in place with compost
 3. Stockpile topsoil prior to grading, and reuse on site (amend if needed)
 4. Import topsoil meeting organic matter content requirements
- Choose pre-approved or custom calculated amendment rates
- Simple field inspection and verification procedures
- Includes model specs written in CSI and APWA formats
- Available www.soilsforsalmon.org or www.buildingsoil.org
Developing A Soil Management Plan (SMP)

- A scale-drawing identifying areas where each soil treatment option will be applied.
- A completed SMP form identifying treatment options, amendment products and calculated application rates for each area.
- Copies of laboratory analyses for compost and topsoil products to be used, with OM content and C:N.
1: Review Landscape and Grading Plans

Working with plans, check the soil in each area to assess how grading will impact soil conditions and potential for reuse of topsoil excavated for building foundations, stormwater detention facilities, and pavement.
<table>
<thead>
<tr>
<th>Soil Treatment Options</th>
<th>Amendment Rate Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 1. Retain undisturbed native vegetation and soil, and protect from compaction during construction.</td>
<td>Pre-approved Amendment Rate Turf: Mix 1.75 compost into 6.25” soil. Beds: Mix 3” compost into 5” soil.</td>
</tr>
<tr>
<td>Option 2. Amend existing soil at pre-approved or custom calculated rates based on soil and amendment tests.</td>
<td>Pre-Approved Topsoil Import Rate Place 8 inches of topsoil (or enough to provide 8 inch depth with existing soil). Turf: 5% OM = 20-25% compost + 75-80% sand or loam. Beds: 10% OM = 35-40% compost + 60-65% sand or loam.</td>
</tr>
<tr>
<td>Option 3. Import topsoil mix of sufficient organic content and depth.</td>
<td>Custom-Calculated Rate Test soil and amendment for organic content and density to determine amendment rate needed to achieve 5 or 10% organic content</td>
</tr>
<tr>
<td>Option 4a. Stockpile native topsoil during grading, and reapply after construction. (import soil if needed to achieve depth).</td>
<td></td>
</tr>
<tr>
<td>Option 4b. Amend stockpiled soil if needed to meet 5-10% o.m.</td>
<td></td>
</tr>
</tbody>
</table>
Clearing up the confusion about “% organic”

“% Soil Organic Matter Content” in lab soil tests is by loss-on-ignition method

- Most composts are 40-60% organic content by this method

Recommended soil amendment rates (for low-organic soils or sand-compost topsoil mixes):

- **5% Soil Organic Matter Content for Turf**
 - 15-25% compost amendment by volume

- **10% Soil Organic Matter Content for Landscape Beds**
 - 30-40% compost amendment by volume
2. **Identify Areas Suitable for Each Option**

- Established “native” plants and duff to be left undisturbed.
- Areas to be protected from compaction during construction.
- Areas to be cleared of native vegetation but not graded – may be amended at reduced rate.
- Excavated or graded topsoil suitable for stockpiling and reuse on site.
- Compacted layers less than 12 inches deep (after grading) – require scarification or soil import.
- Existing organic content in soil to be retained or stockpiled and reapplied – reduced amendment rate.
3. Tests to Conduct for Custom Calculated Amendment Rates

If planning to use calculated amendment rate, sample and test soil. Request compost test results from supplier.

<table>
<thead>
<tr>
<th>Soil</th>
<th>Compost</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bulk density</td>
<td>• Bulk density</td>
</tr>
<tr>
<td>• Percent organic matter</td>
<td>• Percent organic matter</td>
</tr>
<tr>
<td></td>
<td>• Moisture content</td>
</tr>
<tr>
<td></td>
<td>• Carbon to nitrogen ratio</td>
</tr>
</tbody>
</table>

Sampling and calculations must be performed by licensed Soil Scientist, Geologist, Civil Engineer or Landscape Architect.
4. Select Amendment Options

Outline areas where each amendment option will be applied on plan. Assign each area a letter (A, B, C…) on the plan and Soil Management Plan form.
5. Calculate Amendment, Topsoil & Mulch Volumes on Soil Management Plan Form

• For Pre-Approved Amendment Rates: Calculate the square footage of each area, and complete calculations for each area to convert inches of amendment into cubic yards.

• To Compute Custom Calculated Amendment Rates: Use soil and amendment test results, and the Model Amendment Rate Calculator.

• List products on the Soil Management Plan form.

• Procure recent product test sheets showing that compost or other organic materials specified meet requirements.

model SMP form is on page 13 in the “Building Soil” manual, and on websites Amendment calculators at:
www.buildingsoil.org
www.soilsforsalmon.org

or (King County example)
http://your.kingcounty.gov/solidwaste/compost_calculator.htm

or (Seattle soil amendment std. plan)
http://www.seattle.gov/dpd/Codes/StormwaterCode/Forms/
Verification of Post-Construction Soil Quality and Depth BMP

Inspections

Verification

Dispute Resolution
Who Will Verify BMP?

Primary

• Code Enforcement Inspector
• May be assigned to Landscape Architect

Independent Inspection to Resolve Disputes

• Certified Soil Scientist, Crop Advisor or Agronomist
• Licensed Landscape Architect, Civil Engineer or Geologist
Suggested Inspection Procedures

- Pre-Grading Inspection
- Grading Progress Inspection
- Post-Construction Inspection
- Mulch Verification

Exact number of inspections will vary between jurisdictions and project type.

Example form and guide at www.soilsforsalmon.org

Field Verification form & guide is on page 16 in the “Building Soil” manual, and on website
Inspection / Verification Supplies

- Field Verification Form
- Soil Management Plan
- Site drawing
- Shovel
- Tape measure
Pre-Grading / Grading Progress Inspection

- Verify native soils & vegetation delineation and protection per SMP
- Review SMP with general contractor and/or grading equipment operator
- Verify erosion controls in place
- Verify excavation & stockpiling of native soils consistent with SMP
- Check sub-grades consistent with SMP
Post Construction
(prior to planting)

• Compare conditions to SMP / drawings
• Confirm volumes on amendment delivery tickets match approved SMP
• Dig test holes to check depth of amended soil & scarification
• Use shovel test to check uncompacted depth in multiple locations
Dig Test Holes to Check Depth of Amended Soil & Scarification

- At least three 12 inch deep test holes per acre (3 minimum) for each treatment
- 8” depth of amended soil (excluding mulch layer)
- Scarified subsoil
Check Soil Depth

- Use shovel or rod “driven only by inspectors weight” to test for compaction.
- Test 10 locations per landscaped acre (10 minimum).
In Case Of Dispute

Referred to third party for sampling and testing of organic matter:

• Independent Certified Agronomist, Crop Advisor or Soil Scientist; Licensed Civil Engineer, Landscape Architect or Geologist

• Accredited Soil Testing Lab
Dispute Resolution

- Organics verified using Loss On Ignition method
- No analytical method to verify scarification

➢ Best to rely on delivery tickets and field tests
How to Select Compost

Know your supplier!

- **Field tests:**
 - earthy smell - not sour, stinky, or ammonia
 - brown to black color
 - uniform particle range
 - stable temperature (does not get very hot if re-wetted)
 - not powdery or soaking wet

- **Soil/compost lab test info:**
 - Nutrients
 - Salinity
 - pH
 - % organic content (OM)

- **Mfr.-supplied info:**
 - Meets US Compost Council (STA) “Seal of Testing Assurance”, State & WDOT specs
 - C:N ratio
 - Weed-seed trials
 - Nutrients, salinity, contaminants
 - Size: “screen”, % fines
“Composted Material” per WAC 173-350-220

- Produced at “Permitted Facilities” with environmental safeguards to protect streams and groundwater (except very small producers).
- Process monitored to ensure temperatures that destroy most pathogens.
- Tested at frequencies dictated by feedstock & output, for:
 - Heavy metals
 - Pathogens
 - Physical contaminants
 - Biological stability (affects odors and plant response)
Carbon to Nitrogen ratio of composts

• For turf & most landscapes
 C:N ratio of 20:1 to 25:1 - good nutrient availability for first year of growth (no other fertilizer needed)

• For native plants and trees
 C:N ratio of 30:1 to 35:1, and coarser (1” minus screen)
 – less Nitrogen better for NW natives, discourages weeds
 – for streamside, unlikely to leach nitrogen
Compost Application Methods

Compost application & incorporation methods:
- Blowing
- Spreading
- Tilling / ripping
- Blending off-site
Blowing & spreading

- Blower trucks
- Various construction grading equipment
- Other equipment: golf course & farm spreaders
Issaquah Highlands –
the big scale
Incorporating amendments into soil

- Range of equipment for different-sized sites
- Till in to 8” depth
- If compacted, rip to 12” depth before/while amending
Stockpile site soils & amend, after road & foundation work

- Allows mass grading
- Can reduce hauling & disposal costs
- Set grade to allow re-application of topsoil & allow for settling
- Amend stockpile to spec offsite, or after reapplication
- Spread after concrete work
- Rip in first lift, to reduce sub-grade compaction
Redmond Ridge, Quadrant Corp.

- Large, master-planned development
- Forest left undisturbed where possible - no compaction
- Cleared vegetation & duff stockpiled for use as soil amendment
- Removed topsoils stockpiled
- All soils amended to 12” depth with organics
- Early Problems: Too much organic esp. for turf areas, organic materials not composted (landclearing & duff) - soft soil, excessive water retention, low N, plant/turf problems as result
Redmond Ridge: current method

- Grade site 12 in. below finish
- Install foundation, along with driveway & walkway rock pads
- Spread 14 in. amended soil mix, (will settle to 12 inches) rip in first lift to mix with subsoil
- Soils blended offsite from native duff plus compost
- Soil organic matter controlled to ~10%, pH and C:N ratio for optimal plant growth
Importing “Topsoil”

• “Topsoil” is not a defined, regulated product. Topsoil products often include subsoil, uncomposted organic material, land-clearing and construction debris…

• Best to use mixes containing only clean compost and mined sand or “sandy loam” as defined by USDA.

• Important to avoid clay that can inhibit drainage – spec <5% passing #200 sieve

• See Seattle/WSU/PSP “Bioretention Soil” specification at www.seattle.gov/util/GreenInfrastructure
Erosion Control
Compost Applications for the Northwest

- Blankets
- Berms
- “Socks” (tubes)
Compost Based Erosion Control BMPs

- EPA-approved BMPs: blankets, berms, and socks see www.buildingsoil.org

- “2 for 1” – use compost for erosion control, then till in at end to meet soil BMP:
 - No disposal costs
 - Faster planting, better growth

- Costs: blankets similar to rolled products, but savings on disposal, plus 2 for 1 benefits

“2 for 1” – construction erosion control and soil quality BMPs are met with compost at Issaquah Highlands.
WsDOT: Erosion control, water quality, successful landscapes with lower mtce. costs

SR 14, Vancouver
Coarse compost, blown in
Note erosion where not applied

Compost amendment, ripped in

Extensive soil bio-engineering info at:
http://www.wsdot.wa.gov/Design/Roadside/
Combine methods as needed for best water quality and flow control

WsDOT - Protecting Wetland Area from I-5 Runoff
USING MULCHES
After planting and for annual maintenance

BENEFITS:

Mulches limit weed growth, and make weeds that sprout easier to pull or cultivate.

Mulches conserve water, moderate soil temperature, and reduce erosion.

Mulches replenish soil organic matter, enhancing soil biodiversity, structure, and nutrient cycling = increased plant vigor.
Mulching

WHEN After planting, and once every year or two:
- Spring or fall on trees and shrubs to prevent weeds.
- Early summer on gardens. (Let soil warm up.)
- Fall on beds to prevent erosion and compaction.

WHERE Whole beds, paths, 3 ft. or larger ring around trees & shrubs in lawns.

HOW Remove weeds & grass before spreading mulch. Keep mulch away from plant stems. Use weed barriers or cardboard to control aggressive weeds.
Mulching

WHAT

Woody mulches (wood chips, bark) for woody plants (trees & shrubs).

Non woody mulches (compost, leaves, grass clippings, composted manure or biosolids) for non-woody plants (annuals, perennials, berries, roses).

HOW MUCH

Compost, leaves, sawdust, fine bark, grass clippings: 1-2” deep.

Wood chips or coarse bark: 2-4” deep.
Putting Organic Amendments to Work:
- Restoring soil functions
- Protecting watersheds
Putting organics to work - SEA Streets

Street Edge Alternative onsite detention demo, Seattle Public Utilities and SDOT.

- Compost in wet and dry zones
- 98% reduction in runoff.

www.seattle.gov/util/NaturalSystems/
Broadview Green Grid, Seattle
Compost-amended soil in bio-retention swales
Broadview -
Erosion control with compost blankets, berms, and socks
WsDOT projects around Washington

Erosion control and plant establishment on steep site using compost blankets

Chelan

Photos courtesy of Sandy Salisbury, WSDOT
Selling soil BMP’s to builders, landscape contractors, & homeowners:

<table>
<thead>
<tr>
<th>Value to builder/contractor</th>
<th>Sell quality & savings to customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Less plant loss = fewer callbacks</td>
<td>• Better plant survival/ health/ growth/ appearance</td>
</tr>
<tr>
<td>• Making money on materials and labor</td>
<td>• Lower water bills</td>
</tr>
<tr>
<td>• Quicker planting in prepped soil</td>
<td>• Lower maintenance costs</td>
</tr>
<tr>
<td>• Easier maintenance</td>
<td>• Reduced chemical needs</td>
</tr>
<tr>
<td>• Better appearance sells next job</td>
<td>• Better for salmon because:</td>
</tr>
<tr>
<td></td>
<td>– reduced storm runoff</td>
</tr>
<tr>
<td></td>
<td>– improved water quality</td>
</tr>
</tbody>
</table>
Links to useful soil specifications:
Guidelines Manual for Implementing WDOE Soil Quality & Depth BMP (includes APWA & CSI specs)
www.soilsforsalmon.org or www.buildingsoil.org

Puget Sound Partnership, LID Technical Manual
www.psp.wa.gov/documents

WsDOT “Soil Bioengineering” specs
http://www.wsdot.wa.gov/Design/Roadside/

Seattle “Natural Drainage Systems” projects & “Green Stormwater Infrastructure” specs www.seattle.gov/util/GreenInfrastructure

King County soil regs (in Grading code)

City of Seattle soil regs (in Stormwater code)
A natural solution - for healthier streams, and healthier landscapes

- Conserve existing soils and vegetation where possible.
- Restore natural functions in disturbed soils by reducing compaction and using organic amendments.

www.BuildingSoil.org

www.SoilsforSalmon.org